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ABSTRACT 

This thesis investigates the performance analysis of a non-coherent Binary 

Frequency Shift Keying (BFSK) receiver using Selection Combining techniques over a 

frequency non-selective, slowly fading Nakagami channel. These techniques are 

independent of the number of diversity branches, so simpler receivers can be employed. 

First order selection Combining (SC), second order Selection Combining (SC-2) 

and third order Selection Combining (SC-3) techniques are evaluated and compared to 

each other. Numerical results show that the performance improves as the order of 

Selection Combining techniques increases. 
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I.   INTRODUCTION 

A.      BACKGROUND 

Diversity is a well known technique that may be used to reduce the effects of channel 

fading. Fading is produced when there is interference between two or more versions of the 

transmitted signal arriving at the receiver at different times [2]. When a diversity technique 

is used, we transmit or receive several replicas with the same information. In this way we 

reduce the probability that all replicas of the signal will fade simultaneously. So the 

demodulation of the information at the receiver can be done using the more reliable replica 

of the signal. We can employ various diversity techniques. The most well known ones are 

frequency, time and space diversity. 

In frequency diversity the information is transmitted onZ different carrier frequencies. 

Here the separation between the carriers must equal or exceed the coherence bandwidth (Af)c 

of the channel. The coherence bandwidth (Af)c is defined as the range of frequencies over 

which two frequency components have a strong amplitude correlation [2]. 

In time diversity the information is transmitted L times. Here the separation between 

the successive time slots must equal or exceed the coherence time (At)c of the channel. The 

coherence time (At)c is defined as the time duration over which two received signals have a 

strong amplitude correlation [2]. 

In space diversity a single transmitting antenna and several receiving antennas are 

employed. These receiving antennas must be placed at least 10 wavelengths apart from each 

other, so that the multipath components in the signal have different propagation delays at the 



antennas. 

There are also some other types of diversity such as angle-of-arrival and polarization 

diversity. But generally frequency diversity, time diversity and space diversity are employed. 

At the receiver we use some diversity combining techniques like Equal Gain 

Combining (EGC) and First, Second and Third Order Selection Combining (SC-1, SC-2, and 

SC-3 respectively). The different orders of Selection Combining techniques are investigated 

in this thesis for noncoherent Binary Frequency Shift Keying (BFSK) signals in a slowly 

fading Nakagami-m channel. 

B.        NAKAGAMI FADING CHANNEL 

■ In this thesis, the received signal's amplitude is assumed to be a Nakagami- m random 

variable and its probability density function is given by [1] 

2     m      -   , ma2^ 
f (a) = (—)"a2"-1 exp(- ——) , (1) 

where a > 0 and 

Q2 1 
m=^{^}-2 , (2) 

and where 

ü = E{a2} (3) 

The function r(m) is defined as 



a. 

T(m)=ltm-i&qp(-t)dt (4) 

By changing the /»-parameter of the Nakagami distribution we can model different 

environments. For example, for m=1 we have the Rayleigh fading channel and for /w=0.5 we 

have the one-sided Gaussian fading distribution. Finally, as m tends to infinity the channel 

becomes non-fading. 

C.      NON-COHERENT BFSK RECEIVER FOR SC TECHNIQUES 

Fig. 1 shows the block diagram of the non-coherent BFSK receiver used for the 

Selection Combining techniques [1]. Depending on the order of Selection Combining that is 

employed, we choose the signals with the largest amplitudes. For example, if we want to 

employ Third Order Selection Combining, we choose components with the first three largest 

amplitudes. Then we combine these signals into one signal, as is described in the next chapters 

and pass the resulting signal to the demodulator. For the binary orthogonal modulation 

scheme ,as we employ it, non-coherent detection should be performed. Thus we use a square- 

law detector to demodulate the signal [1]. 

In BFSK when data bit £7=1 is transmitted the waveform v(1) (t)\s given by the 

expression 

vw(0=i 
A^jcosilxfJ +0,),      0<t<T (5) 

0, elsewhere 
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Figure 1. Non-coherent BFSK receiver for SC techniques 



where A-421T    is the amplitude of the signal, T is the bit duration,/, is the carrier 

frequency and 9X is the signal phase. 

When data bit &7=0 is transmitted the waveform v(2)(t) is given by the expression 

vw(0 = rL-™ •-" , (6) 
A i\-cos(2Kf21+02),      0<t<T 

0, elsewhere 

where again A-JlTf  is the amplitude of the signal, T is the bit duration, 62 is the signal 

phase and f2 is the carrier frequency. The two frequencies must have such values that the 

two waveforms are orthogonal over the interval [0,T] hence the minimum frequency spacing 

must be 

l/2-/,l4 (7) 
T 

The actual received signal in the above time interval is 

r(i)(t)=aV(i)(t)+n(t),       i = 1,2 , (8) 

where a is the Nakagami-m random variable whith probability density function given by (1) 

and n(t) is white Gaussian noise with power spectral density 

2 ^0 

°l = -^ ■ (9) 



Assuming now that data bit bt= 1 is transmitted, the in-phase outputs of the receiver are 

Ylc = aA cos#j + nlc = a^fE^cosO^ nle (10) 

and 

Y2c = n2c , (11) 

where Ec = A2 is the average energy per diversity bit and 

nXc = [^Y cos(2^ fi'KO* (12) 

and 
T |Y 

"2« = IJr cos(2/rf20"(0<fr ■0 j, w^" ^^"W"1 (13) 

The quadrature outputs for the receiver are 

Yu = aA cos*?! + «is = ajE~sm61 + «u (14) 

and 
Y2s  = "is , (15) 

where 

r  (2 
"u = 1 \-sin(2nfxt)n(f)dt (16) 

o-r 

and 

"2, = j \-sin{lnf2t)n{t)dt . (17) 
0   * 



All the above random variables nlc,n2c,nls,n2s are independent, identically distributed, zero 

mean, Gaussian random variables with variances an
2. At the two branches we have 

(18) 

(19) 

and 

V = 72 + Y2 = rr + n2 

Finally at the output of the BFSK demodulator we have 

V=V1-V2 . (20) 





II.   SELECTION COMBINING 

Selection Combining (SC) is a diversity combining technique where the signal with 

the largest amplitude, or largest signal-to-noise ratio, in L diversity branches is selected. Thus 

the decision variable for the selection combining technique is defined as 

y = max{yl,y2,...,yL} (21) 

where the signal-to-noise ratios per diversity channel yk (k= \,2,...JL) are independent, 

identically distributed random variables with a Nakagami- m probability density function as 

defined in Chapter I. The receiver with selection combining is shown in Fig.2. From the figure 

we see that SC is a predetection combining technique. 

ri(t) fc, 

Choose the 
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Amplitude 

r2(t) 
w 

Demodulator 
r3(t) 

w 
• 

• 

w w 

• 
it/t) w 

►{0,1} 

Figure 2. Receiver for selection combining. 



A.        PROBABILITY DENSITY FUNCTION OF THE DECISION VARIABLES 

The probability density function of yk is given by [1] 

„m m , my, 
frK (r*) = r,   -„rr1***- -jh , (22) 

—        E 
where y, = U. —— (23) 

is the average signal-to-noise ratio per diversity channel. Let the average signal-to-noise 

ratio per bit be yB , then we have 

rc = Y ■ (24) 

So the probability density function becomes now 

mmLm .      ,   mykL^ 

r(m) yB YB 

The cumulative distribution function (cdf) of the above pdf is 

v 

^rr(r) = J/rr(r*yr* (26> 
o 

Substituting (25) into (26) we get 

10 



r    mmLm , my.L 

iT(m)yB 7 B 

mmLm     f     „_,      ,   mykL L       r , my VL. 

r,  ,=^ ■rr1eM—^-)dyk . (27) 
T(m)yB    o 7 B 

We can eliminate the integral using the following expression [3] 

u 

J xv~lexp(-ju x)dx = ju~vg(v,{i u) , (28) 
0 

where the real part of v must be greater than zero. The g-function is defined as [3] 

X 

g(a,x)=\exp(-t)ta-1dt , (29) 
o 

where the real part of a must be greater than zero. 

Applying (28) and (29) in (27) we have 

mmLm      mL^ m   ,    myL^ 

where 

myL 

g(m,^)= \exV(-t)r~ldt (31) 
7 B o 

11 



We can simplify (30) as follows 

1 my L „^. 

Now we can define the probability density function for the largest signal-to-noise 

ratio y in (21) using the expression [9] 

fr(r)=Lfrx(y)[FrK(r)]L-1 (33) 

Substituting (25) and (32) into (33) we have 

/rW.^^r-^(-3i)I^S£H» (34) 
[r(m)]   yB yB YB 

B.        BIT ERROR PROBABILITY 

The bit error rate expression of BFSK for a fading channel, conditioned on the 

signal-to-noise ratio y, is given by [1] 

^(r)=|exp(-|) (35) 

In order to obtain the error probability expression of BFSK for the Nakagami- m fading 

channel, we use the following integral 

CO 

PB = j PBd)fr(r)dr (36> 

12 



Substituting (34) and (35) into (36) we have 

f 1 Y       L,    m m , myz, r   ,    my L^,, , 
PB = j ~exp(-M r~'«p(-^=-) g(iii,^=-)]£ ^r 

o2        2 [r(«)]VB ^ ^ 

^=^\ym-*ex£>[-Y .(-+=r)].[g(m,-±=r-)}L xdy (3?) 

2[T(m))LrB   J
0 *    YB 71 

13 



14 



III.   SECOND ORDER SELECTION COMBINING (SC-2) 

For second order selection combining (SC-2) we use the two largest amplitudes as 

decision variables from the L diversity branches. Thus the two decision variables for SC-2 are 

defined as 

V, = max{/l3y2,...,yL} 

V2 = second max {y1,y2,...,yL} (38) 

where the signal-to-noise ratios per diversity channel yk (k = 1,2,...,L) are independent, 

identically distributed random variables with a Nakagami- m probability density function as 

defined in Chapter I. This technique is a predetection combining technique with the receiver 

shown in Fig. 3. 

ri(t) 
r2(t) 
r3(t) 

ÜÜ 

Choose the 
two 
Largest 
Amplitudes 

Demodulator -^{0,1} 

Figure 3. Receiver for the second order selection combining. 
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A.        PROBABILITY DENSITY FUNCTION OF THE DECISION VARIABLES 

The probability density function of yk is given by (25). Since we have two decision 

variables, we have to define their joint probability density function [9] 

/^(v„v2)= UL- l)frKMfrK(v2)[FrK(v2)r
2 , (39) 

where   Vj > v2 .The selection combiner output y is 

y = vx + v2 (40) 

Now we must derive a probability density function for the random variable y.The 

cummulative probability function for the random variable y is defined as [9] 

r12 y-v2 

FY(J)= \    J/K^CV^VJ)^^ (41) 
0       v. 

Substituting (39) into (41) we have 

r/2   /-v: 

/    I 
0       v2 

[ I*.    I     -2 

Fr(r)=\    lUL-Vf^f^vJiF^v^dv^ (42) 

The cummulative probability function FrJy-) is defined in (32) in Chapter II. So substituting 

(25) and (32) into (42) we get the following expression for the cummulative probability 

function 

16 



r272 mmLm       ml     ,   mv.L^    mmLm 

FT(y)=\    J   UL- 1) —„ vr-'expC--=H _„ 

x v^cqK- -=H ^2 [gfo-^H]^2*^ -    (43) 

Simplifying and separating the integrals we have 

m2mL2m      7?   72 '       mvxL 
Fr(r) = L(L-l) 2m J {  j vr1 -exp(—^M^} 

x v,"-1 exp(- -^-)[g(m,-^-)]L-2dv2 .     (44) 

The internal integral can be expressed in a simpler way using (29) as 

\ v^1 exp(- ~^-)dvx =  J  vr1 exp(- -=i-)*1 - 

o /s 
wL m (y - v7)L        ,    m v, L 

= (=)-m[g(^        -2    )" «0*—Ml (45) 
YB YB YB K   ' 

Substituting (45) into (44) leads to 

mmLm      Y? m(y-v7)L mvixi 

[r(w)] /B   o /*       . ^ 

x v,-1 exp(—^-)[g(w,-=2-)]L-2^2 -     (46) 
7* YB 

The probability density function corresponding to the above cummulative density function 

is obtained as follows 

17 



d 
fr(r)=-^-iFr(r)] (47) 

Substituting (46) into (47) we have 

mmLm       d   r? m(y-v2)L^     ,    mvi 
/r00= L(L- 1) — {J [g(m,    ^-2'   )-g(^^-)] 

[r(^)]x /2J  <*r i r^ r* 
rnv^L mv0L   , _ 

x v/-1 exp(--=l-)[g(iii,-^-)]« Jv2} = 

mnLm d  rr2 m(y-v2)L„  ,    mv-L.. 

X 
mv-L d  rr mv2L^r ,       . 

v,-1 exp(- -==H<2v2J- -r-[ j [gCm,-^)]1-1 v^1 

xeXp(-^-)^]} - (48) 

Now we use Leibnitz's rule, given by 

b(x) 

d[jf(A,x)dA] hw,,,.    v 
 - = mxM—-f(a(xM — + ^-J^-dX . 

Using (49) expression (48) becomes 

[T(m)]L yB     2 2yB 2 
r?      , mv0L mv2L^ 

rf m (y - v2)L 1 my L^L_uy 

my L rr2      , mv0L mv7L^r xexp(--4^)-0+ fv2~
1exp(--=Mtete-=i-)]t- 

2 YB o /B ^5 

2 

<*r r* 2        2/ß       2 

x exp(--^^)+0-0} = 

18 



T,T    ^     m""1"1     T  ^ mv
2L mv2L 

[roof/*   o r* 7s 

—- (g(m, = ))öfr2 
^ r* (50) 

Now employing again the Leibnitz's rule at the last derivative and using (28) we have 

m(y-v2)L 

d m(r-v2)L       d      r! 

^B YB YB 

mL m (y -v2)L    m (r - v,)Z     . 
= ^^[exp(-     v/__2'   )](    v_2J   )»-i      . (51) 

r* /B /* 

Using (51), the expression (50) becomes 

2m r2m+l ^   7'2 

fT(Y) = (L- 1) 2mexp(---L-) J (v2(r -v,))-1 

X 
mV2L^L- [g(m,^-)r*dv 

YB 
2 

(52) 

B.        BIT ERROR PROBABILITY 

The bit error rate expression of BFSK with second order selection combining, 

19 



conditioning on the signal-to-noise ratio y in (40), is given by [9] 

PF(/)=^[exp(-|)](4+|) (53) 

In order to obtain the error probability expression of BFSK for the Nakagami- m fading 

channel with SC-2 technique, we use the following integral 

PB = \pB(r)fr(r)dy (*) 

Substituting (52) and (53) into (54) we have 

8[r(m)]V5   i     
2 2   rB 

x { j (v2(r -v2))m-l[g(m,-^-)]L-2dv2}dy (55) 
0 YB 

20 



IV.   THIRD ORDER SELECTION COMBINING (SC-3) 

For third order Selection Combining (SC-3) we use the three largest amplitudes as 

decision variables from the L diversity branches. From L independent, identically distributed 

random variables, the three decision variables for SC-3 are defined as 

V, = max {yj,y2,...,yL} 

V2 = second max {yj,y2,...,yL} 

V3 = mkdmax{y],y2,...,yL} 

(56) 

where yK (k = 1,2,...JL) are independent, identically distributed random variables with a 

Nakagami- m probability density function as is defined in Chapter I. Again this technique is 

a predetection combining technique and the respective receiver is shown in Fig. 4. 

ri(t) ^ 

Choose the 
three 
Largest 
Amplitudes 

r2(t) 
w 

Combiner 
r3(t) 

—► 
w 

BFSK 
Detector 

w i  w W 

• 

rL(t) 
w 

►{0,1} 

Figure 4. Receiver for the third order Selection Combining 
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A.       PROBABILITY DENSITY FUNCTION OF THE DECISION VARIABLES 

The probability density function for each yK is given by (25). Since we have three 

decision variables, we have to define their joint probability density function [9] 

W3 (vl5v2,v3) = L(L - l)(L - 2)/rr (v3)/rr (v2)/Fjc(v,) 

x[^(v3)]L-3 , (57) 

where vr > v2 > v3 .Now since the selection combiner output y is 

r = v, + v2 + v3 ^ (58) 

we have to derive a probability density function for the random variable y. The cummulative 

density function for y is defined as [9] 

L   y~v3 
2      r-v2-v3 

Fr(r)=]        I f/K,/273(
VPV2'V3)^.^3 (59) 

0        v3 v2 

Substituting (57) into (59) we have 

r_   r-y3 

Fv (T ) = 1     1     ' 1   ^ - IX* " 2)/rr (v3 )fTx (v2 )/Fx (v,) 
0        v3 v2 

x [^ (v3 )]L"3 dv^dv. (60) 

Substituting (25) and (32) into (60) we have 

22 



r_   r-v; 
3     2     r-v2-v3 mmlm mv T 

FAr) = \   I     j K£-iXi-2)-^v,-«M-^ 
o    v3        v2 T(m)yB yB 

x v-1 exp(- -=H   , w v-1 exp(- -=H 

7E=T [^(w5--=^-)]i_3 dvxdv2dvz [Tim)]" —   r/j   « i    ^   3 (61) 

Simplifying and separating the inner integral we get 

r    r-v3 

Fr(r)=L(L-l)(L-2) f    }    {    j    v/"-1 

x exp(- -=L-)Ä1} v3
m-1 exp(- -=£-) v^"1 exp(- -=^-) 

mv3L   , 3 
x  [g(w,-=-)l "   ^2^3 ■ (62) 

YB 

Using (28) we can eliminate the inner integral as follows 

J      v,"-1 exp(- -=^-) rfvj =    J      vx
m~l exp(- -=H dvx - 

v, 7j5 0 IfB 
Vn mvxL^ 

-J v™'1 exV(—=±-) dvx = 
o y B 

m L m(y - v, - v,)L m v,Z, 

7* yB YB ■   K   } 

So using (63) the expression (62) becomes 



Jim rim 3 2 

Fr(r)=Z(L-l)(L-2) m j     j    [gfo - ) 

- g(m,-=^-)] v^1 exp(- -=J-) v/-1 exp(- -=H 
7B YB YB 

mv3L   L_3 
x  [g(m,-=-)] "  ^2^3 . (64) 

The probability density function for the random variable y is given by (47) 

L    till. 
m2mL2m        d t\    \   r  ,    m(y-v2-v3)L 

fT(r)=L(L-l)(L-2) -{J    J   [gfm, = ) 
[l(m)] yB      aY    o    vs YB 

- g{m,-=H\ vr exp(- -=i-) v/-1 exp(- -=H 
7ß 7s 7s 
mv~L   r_„ 

X   [g^-^*-)]^ rf^} . (65) 

Separating the derivative into two terms results in 

r   r~v3 

m2mL2m d      I     f      /    m (/ - v2 - v3)L ^.^.^.«-—^[-{j Jg(m, ) 

x {g^^£^vr exp(. ^) v-> exp(- ^W, > 
7B 7B YB 

-~r{\     f   ^(m,^=^)[^(m,^J-)f-3v3'-
1exp(--^-) 

^7     i    1 7B 7B YB 

x ,2 

i*7 V   / 
v^1 exp(- -=J-)^2^3 }] . (66) 

YB 

24 



We can now employ Leibnitz's rule (49) seperately to the two terms. The first term 

becomes 

r_   r-v3 
3       2 

— { j     j   gfo _i     3/   ) ^O-fv,*1 exp(- -=i-) 
^ 0       v3 75 ^5 /£ 

x v^-1 exp(- -=J^-)dv2dv3 } = 
7B 

0 ' v3 7J5 7.g 

r   ,    mv^L, ,   _ . mv-.L 
x [g(/K)^-)]wv3

ffl-1
exp(-^-)^ = 

7B 7s 

x [g(^,-=^-)]L-3v3'"-1 exp(- -=*-) - 0+ V3-1 exp(--=M 
7 B 7B 7B 

7B v, 7 B 

c?           m(7 - v2 - v3)L 
— { g(m, =L——)}dv2 }dv3 
d7 7B 

(67) 

Again employing Leibnitz's rule and using (29) we can eliminate the last derivative as 

follows 

m(r-v2-v3)-k 

d m(y -v, -v,)L        d t , 

= (^r[exp(.^zÄi^)Kr.V2.V3r..o+o.   (68) 
7B 7S 
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So the first term finally becomes 

3 2 

dr    o   i r* r* r* 
, fflV2I 

x v2     exp(-   —   )dv2dv3 } = 
7s 

1 m(/-v3)L,          w(y- v3)L  y-v3    t zg(m, -= ) exp(- -= )(——) 
2 2yB 2yB 2 

x [g(m,-=^)rV_1 exp(- -=H + v3~(=) 
YB YB YB 

m v3L   L_3 m y L 
r-v3 

2 

x [gim^)]1-3 exp(- ^) j V/-V - v2 - v3)-
1^2]^3 

/ß /B v, 

The second term becomes 

<fr      o     1 YB YB YB 

Yi 
x v2

m_1 exp(-   —   )^v2^3 }] = 

(69) 

L r~v3 

}    d   r }     ,    mv2L^   m_i       ,   mv2L 
= 0-0+]   — {[   g{m,-^-)v2

m    exp( =^-)^2} 

*[**^)J"v-«p(-^)*,- 
YB YB 

x[g(m,^=-)]i-Jv3
m-1exp(—==-)^3-0+0    . (70) 

YB YB 
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Substituting (69) and (70) into (66) we get 

x exp(- -=H + v3
m-1(=r[g(m,^-)]L-3 exp(- -i-) 

r* YB YB YB 
r-y3 r 

2 3 

|vr!(r - v2 - V3)-1 Jv2]Jv3 - j   -g(m,    \-3J  ) 
1 /w 0 - v3)ZN 

2ÖV 2Yl 

x exp(-     v -3/   )(^r^)"'-1[g(^^^-)]L-3v: 
2

YB 2 7B 

x exp(-   —   )dv3} = 
r B 

7_ 

= (L- 1X^-2) -„ «p(--^)jQK«,—HP 3 

[Y(m)fyB YB     0 7* 
r-"3 

2 

XV3-1   jv2'-
I(7-V2-V3r1Jv^V3 

The probability density function for the random variable y is given by 

m3mL3m+1 ,   myLjr  /    mv3LL3 
fT(Y)=(L- l)(L - 2) ,_3mexp(- -d=-)\ [g(m,-=^-)]L-3 

[r(/«)]V/m    ""     /so" YB 

2 

XV3-1   Jv2*-10-V2-V3)-
l
t*2«*3 
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B.        BIT ERROR PROBABILITY 

The bit error rate expression of BFSK for the Third Order Selection Combining, 

conditioned on the Signal-to-Noise ratio, is given by [9] 

i 2 

In order to obtain the error probability expression of BFSK for the Nakagami- m 

fading channel for the SC-3 technique, we use the following integral 

00 

PB = l PB(r)fr(r)är - (74> 

Substituting (72) and (73) into (74) we have 

Pb = {^exp(-^-)(16 + 3y+^-)(L-l)(L-2)- 
nfmU 

032"^   2" 8-      -        \T{m)f7Bm 

r_ r~v3 

x exp(- -^=-) { J [g(/w,—)]     x v3      J v2 
TB O TB V3 

x(y-v2-v3)
m-1dv2dv3}dy = 

m3mT3m+1        f v2 

= (L-l)(L-2)-—-—^\(16+3y + ±-) 
32[T(m)]LyB     o 8 

r_ r-^3 

x exp[-r(I+Si)] { ji^üSt)]" x v- jv2- 
^        Y B 0 ^B v3 

x(y-v2-v5)
m-ldv2dv3}dy (75) 
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V.   NUMERICAL RESULTS 

In chapters II, m and IV we evaluated the expressions for the bit error rate for 

noncoherent BFSK signals over a frequency non-selective, slowly fadingNakagami-m channel 

using SC, SC-2 and SC-3. In order to illustrate the performance and to compare the three 

techniques, we used MATLAB 5.1 [7] and MATHCAD 7 [8] . The numerical results are 

shown in Figures 5-32. The bit signal-to-noise ratio is selected in the range of 6-20 dB. 

Values of the factor m=0.5, 0.75,1,1.5,2, 3 of the Nakagami-m fading channel were used 

to provide sufficient detail of the performance. 

In Figs. 5-10, the first order Selection Combining (SC) performances are presented 

for diversity orders of 1=1,2, 3,4, 5 and for the values of m given above. 

In Figs. 11-16, the second order Selection Combining (SC-2) performances are 

illustrated for the same values of m as in Figs. 5-10 and for diversity orders of L=2,3,4,5. 

In Figs. 17-22, the third order Selection Combining (SC-3) performances are shown 

for the same values of m as in Figs. 5-10 and for diversity orders of 1=3,4, 5. 

In Figs. 23-28, the SC, SC-2 and SC-3 performances are presented for each one of 

the above values of m using an arbitrary value for the diversity order L. 

In Figs. 29-31, the SC, SC-2 and SC-3 performances are illustrated seperately for all 

previously chosen values of m using values of 2, 3 and 4 for the diversity order. 

In Figs. 5-22, we note that as L increases we have a better receiver performance. As 

m increases we notice that the system performance with smaller diversity order L seems to 

be better than those with larger diversity order L for low values of the signal-to-noise ratio. 
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As the signal-to-noise ratio increases this phenomenon becomes reversed. This happens 

because of the noncoherent combining loss. So in conclusion, a system with a higher diversity 

order L performs better than a system with a smaller L. 

In Figs. 23-28, we can clearly notice that for any value ofL or m we choose, the SC-3 

technique performs better than the other two techniques and also the SC-2 technique is 

superior to the SC technique. We can also see that as the order of diversity or the factor m 

increases the performance differences between the three techniques increase in favor of the 

greater order technique. So in conclusion, as the order increases the Selection Combining 

techniques correspondingly perform better. 

In Figs. 29-31, we can observe that as the factor m increases the system performs 

better. This happens for all the techniques and is something we expected since as m tends to 

infinity the channel becomes non-fading. 
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Figure 5. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.5, using first order Selection Combining (SC) for diversity orders of 
L = 1, 2, 3,4 and 5. 
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Figure 6. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.75, using first order Selection Combining (SC) for diversity orders of 
1=1, 2, 3,4 and 5. 
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Figure 7. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m=l, using first order Selection Combining (SC) for diversity orders of 
L =1,2, 3, 4 and 5. 
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Figure 8. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 1.5, using first order Selection Combining (SC) for diversity orders of 
I = 1, 2, 3, 4 and 5. 
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Figure 9. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 2, using first order Selection Combining (SC) for diversity orders of 
L = 1,2, 3, 4 and 5. 
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Figure 10. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 3, using first order Selection Combining (SC) for diversity orders of 
L = 1, 2, 3, 4 and 5. 
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Figure 11. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.5, using second order Selection Combining (SC-2) for diversity 
orders of £ = 2, 3, 4 and 5. 
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Figure 12. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.75, using second order Selection Combining (SC-2) for diversity 
orders of L = 2, 3, 4 and 5. 
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Figure 13. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m=\, using second order Selection Combining (SC-2) for diversity orders 
of I = 2, 3,4 and 5. 
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Figure 14. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 1.5, using second order Selection Combining (SC-2) for diversity 
orders of I = 2, 3,4 and 5. 
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Figure 15. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 2, using second order Selection Combining (SC-2) for diversity orders 
of I = 2,3,4 and 5. 
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Figure 16. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 3, using second order Selection Combining (SC-2) for diversity orders 
of L = 2, 3,4 and 5. 
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Figure 17. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.5, using third order Selection Combining (SC-3) for diversity orders 
of I = 3,4 and 5. 
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Figure 18. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.75, using third order Selection Combining (SC-3) for diversity orders 
of L = 3,4 and 5. 
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Figure 19. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m-l, using third order Selection Combining (SC-3) for diversity orders of 
L = 3, 4 and 5. 

45 



£> 10 

I p 
£   10"4 r 

m 10' 

Figure 20. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m - 1.5, using third order Selection Combining (SC-3) for diversity orders 
of L = 3,4 and 5. 
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Figure 21. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 2, using third order Selection Combining (SC-3) for diversity orders of 
L = 3, 4 and 5. 
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Figure 22. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 3, using third order Selection Combining (SC-3) for diversity orders of 
L = 3, 4 and 5. 
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Figure 23. Receiver performance of SC, SC-2 and SC-3 over a Nakagami fading channel 
with m = 0.5, for diversity order of I = 5. 
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Figure 24. Receiver performance of SC, SC-2 and SC-3 over a Nakagami fading channel 
with m = 0.75, for diversity order of I = 5. 

50 



Figure 25. Receiver performance of SC, SC-2 and SC-3 over a Nakagami fading channel 
with m = 1, for diversity order of! = 5. 
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Figure 26. Receiver performance of SC, SC-2 and SC-3 over a Nakagami fading channel 
with m = 1.5, for diversity order of I = 5. 
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Figure 27. Receiver performance of SC, SC-2 and SC-3 over a Nakagami fading channel 
with m = 2, for diversity order of L = 5. 
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Figure 28. Receiver performance of SC, SC-2 and SC-3 over a Nakagami fading channel 
with /w = 3, for diversity order of L = 5. 
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Figure 29. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.5, 0.75, 1, 1.5, 2 and 3 using first order Selection Combining (SC) for 
diversity order of L = 2. 
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Figure 30. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.5, 0.75, 1, 1.5,2 and 3 using second order Selection Combining (SC- 
2) for diversity order of I = 3. 

56 



£> 10 

a 
■S 
£ 10 

I 
m 10 

Figure 31. Performance of the non-coherent BFSK receiver over a Nakagami fading 
channel with m = 0.5,0.75, 1, 1.5, 2 and 3 using third order Selection Combining (SC-3) 
for diversity order of L = 4. 
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VI.   CONCLUSIONS 

The objective of this thesis is the analysis of the Selection Combining techniques for 

a Binary FSK receivers operating over a frequency non-selective, slowly fading Nakagami 

channel. Numerical results are obtained to allow comparisons. 

The SC techniques are in general simple techniques because they can give satisfactory 

performance without an L dependency. This is something we desire in order to construct 

simpler receivers. On the other hand these techniques are not optimal techniques, since they 

do not use all the available diversity branches at the same time. But if the diversity order L 

varies as a function of location and time, it is desirable that the receiver have an L 

independency. 

It is shown that a system with a higher diversity order I performs better than a system 

with a smaller L. As far as the comparison between the three techniques is concerned, we 

conclude that as the order increases the Selection Combining techniques perform better. 

Finally regarding the Nakagami fading channel, it is shown that as the factor m increases the 

system performs better. 
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